Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

OxyR senses sulfane sulfur and activates the genes for its removal in Escherichia coli.

Identifieur interne : 000141 ( Main/Exploration ); précédent : 000140; suivant : 000142

OxyR senses sulfane sulfur and activates the genes for its removal in Escherichia coli.

Auteurs : Ningke Hou [République populaire de Chine] ; Zhenzhen Yan [République populaire de Chine] ; Kaili Fan [République populaire de Chine] ; Huanjie Li [République populaire de Chine] ; Rui Zhao [République populaire de Chine] ; Yongzhen Xia [République populaire de Chine] ; Luying Xun [États-Unis] ; Huaiwei Liu [République populaire de Chine]

Source :

RBID : pubmed:31421411

Descripteurs français

English descriptors

Abstract

Sulfane sulfur species including hydrogen polysulfide and organic persulfide are newly recognized normal cellular components, and they participate in signaling and protect cells from oxidative stress. Their production has been extensively studied, but their removal is less characterized. Herein, we showed that sulfane sulfur at high levels was toxic to Escherichia coli under both anaerobic and aerobic conditions. OxyR, a well-known regulator against H2O2, also sensed sulfane sulfur, as revealed via mutational analysis, constructed gene circuits, and in vitro gene expression. Hydrogen polysulfide modified OxyR at Cys199 to form a persulfide OxyR C199-SSH, and the modified OxyR activated the expression of thioredoxin 2 and glutaredoxin 1. The two enzymes are known to reduce sulfane sulfur to hydrogen sulfide. Bioinformatics analysis indicated that OxyR homologs are widely present in bacteria, including obligate anaerobic bacteria. Thus, the OxyR sensing of sulfane sulfur may represent a preserved mechanism for bacteria to deal with sulfane sulfur stress.

DOI: 10.1016/j.redox.2019.101293
PubMed: 31421411
PubMed Central: PMC6831875


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">OxyR senses sulfane sulfur and activates the genes for its removal in Escherichia coli.</title>
<author>
<name sortKey="Hou, Ningke" sort="Hou, Ningke" uniqKey="Hou N" first="Ningke" last="Hou">Ningke Hou</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237</wicri:regionArea>
<wicri:noRegion>266237</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yan, Zhenzhen" sort="Yan, Zhenzhen" uniqKey="Yan Z" first="Zhenzhen" last="Yan">Zhenzhen Yan</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237</wicri:regionArea>
<wicri:noRegion>266237</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fan, Kaili" sort="Fan, Kaili" uniqKey="Fan K" first="Kaili" last="Fan">Kaili Fan</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237</wicri:regionArea>
<wicri:noRegion>266237</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Huanjie" sort="Li, Huanjie" uniqKey="Li H" first="Huanjie" last="Li">Huanjie Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237</wicri:regionArea>
<wicri:noRegion>266237</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Rui" sort="Zhao, Rui" uniqKey="Zhao R" first="Rui" last="Zhao">Rui Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237</wicri:regionArea>
<wicri:noRegion>266237</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xia, Yongzhen" sort="Xia, Yongzhen" uniqKey="Xia Y" first="Yongzhen" last="Xia">Yongzhen Xia</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237</wicri:regionArea>
<wicri:noRegion>266237</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xun, Luying" sort="Xun, Luying" uniqKey="Xun L" first="Luying" last="Xun">Luying Xun</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China; School of Molecular Biosciences, Washington State University, Pullman, WA, 99164-7520, USA. Electronic address: luying_xun@vetmed.edu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China; School of Molecular Biosciences, Washington State University, Pullman, WA, 99164-7520</wicri:regionArea>
<wicri:noRegion>99164-7520</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Huaiwei" sort="Liu, Huaiwei" uniqKey="Liu H" first="Huaiwei" last="Liu">Huaiwei Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China. Electronic address: liuhuaiwei@sdu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237</wicri:regionArea>
<wicri:noRegion>266237</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31421411</idno>
<idno type="pmid">31421411</idno>
<idno type="doi">10.1016/j.redox.2019.101293</idno>
<idno type="pmc">PMC6831875</idno>
<idno type="wicri:Area/Main/Corpus">000119</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000119</idno>
<idno type="wicri:Area/Main/Curation">000119</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000119</idno>
<idno type="wicri:Area/Main/Exploration">000119</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">OxyR senses sulfane sulfur and activates the genes for its removal in Escherichia coli.</title>
<author>
<name sortKey="Hou, Ningke" sort="Hou, Ningke" uniqKey="Hou N" first="Ningke" last="Hou">Ningke Hou</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237</wicri:regionArea>
<wicri:noRegion>266237</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yan, Zhenzhen" sort="Yan, Zhenzhen" uniqKey="Yan Z" first="Zhenzhen" last="Yan">Zhenzhen Yan</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237</wicri:regionArea>
<wicri:noRegion>266237</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fan, Kaili" sort="Fan, Kaili" uniqKey="Fan K" first="Kaili" last="Fan">Kaili Fan</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237</wicri:regionArea>
<wicri:noRegion>266237</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Huanjie" sort="Li, Huanjie" uniqKey="Li H" first="Huanjie" last="Li">Huanjie Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237</wicri:regionArea>
<wicri:noRegion>266237</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Rui" sort="Zhao, Rui" uniqKey="Zhao R" first="Rui" last="Zhao">Rui Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237</wicri:regionArea>
<wicri:noRegion>266237</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xia, Yongzhen" sort="Xia, Yongzhen" uniqKey="Xia Y" first="Yongzhen" last="Xia">Yongzhen Xia</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237</wicri:regionArea>
<wicri:noRegion>266237</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xun, Luying" sort="Xun, Luying" uniqKey="Xun L" first="Luying" last="Xun">Luying Xun</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China; School of Molecular Biosciences, Washington State University, Pullman, WA, 99164-7520, USA. Electronic address: luying_xun@vetmed.edu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China; School of Molecular Biosciences, Washington State University, Pullman, WA, 99164-7520</wicri:regionArea>
<wicri:noRegion>99164-7520</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Huaiwei" sort="Liu, Huaiwei" uniqKey="Liu H" first="Huaiwei" last="Liu">Huaiwei Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China. Electronic address: liuhuaiwei@sdu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237</wicri:regionArea>
<wicri:noRegion>266237</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Redox biology</title>
<idno type="eISSN">2213-2317</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chromatography, Liquid (MeSH)</term>
<term>Escherichia coli (physiology)</term>
<term>Escherichia coli Proteins (chemistry)</term>
<term>Escherichia coli Proteins (genetics)</term>
<term>Escherichia coli Proteins (metabolism)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Bacterial (drug effects)</term>
<term>Hydrogen Peroxide (metabolism)</term>
<term>Hydrogen Sulfide (metabolism)</term>
<term>Mutation (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Repressor Proteins (chemistry)</term>
<term>Repressor Proteins (genetics)</term>
<term>Repressor Proteins (metabolism)</term>
<term>Sulfur (metabolism)</term>
<term>Sulfur (pharmacology)</term>
<term>Tandem Mass Spectrometry (MeSH)</term>
<term>Thioredoxins (metabolism)</term>
<term>Transcriptional Activation (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation de la transcription (MeSH)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Chromatographie en phase liquide (MeSH)</term>
<term>Escherichia coli (physiologie)</term>
<term>Mutation (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxyde d'hydrogène (métabolisme)</term>
<term>Protéines Escherichia coli (composition chimique)</term>
<term>Protéines Escherichia coli (génétique)</term>
<term>Protéines Escherichia coli (métabolisme)</term>
<term>Protéines de répression (composition chimique)</term>
<term>Protéines de répression (génétique)</term>
<term>Protéines de répression (métabolisme)</term>
<term>Régulation de l'expression des gènes bactériens (effets des médicaments et des substances chimiques)</term>
<term>Soufre (métabolisme)</term>
<term>Soufre (pharmacologie)</term>
<term>Spectrométrie de masse en tandem (MeSH)</term>
<term>Sulfure d'hydrogène (métabolisme)</term>
<term>Thiorédoxines (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Escherichia coli Proteins</term>
<term>Repressor Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Escherichia coli Proteins</term>
<term>Repressor Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli Proteins</term>
<term>Hydrogen Peroxide</term>
<term>Hydrogen Sulfide</term>
<term>Repressor Proteins</term>
<term>Sulfur</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines Escherichia coli</term>
<term>Protéines de répression</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Bacterial</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation de l'expression des gènes bactériens</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines Escherichia coli</term>
<term>Protéines de répression</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Peroxyde d'hydrogène</term>
<term>Protéines Escherichia coli</term>
<term>Protéines de répression</term>
<term>Soufre</term>
<term>Sulfure d'hydrogène</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Soufre</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sulfur</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromatography, Liquid</term>
<term>Gene Expression Profiling</term>
<term>Mutation</term>
<term>Oxidation-Reduction</term>
<term>Tandem Mass Spectrometry</term>
<term>Transcriptional Activation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activation de la transcription</term>
<term>Analyse de profil d'expression de gènes</term>
<term>Chromatographie en phase liquide</term>
<term>Mutation</term>
<term>Oxydoréduction</term>
<term>Spectrométrie de masse en tandem</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Sulfane sulfur species including hydrogen polysulfide and organic persulfide are newly recognized normal cellular components, and they participate in signaling and protect cells from oxidative stress. Their production has been extensively studied, but their removal is less characterized. Herein, we showed that sulfane sulfur at high levels was toxic to Escherichia coli under both anaerobic and aerobic conditions. OxyR, a well-known regulator against H
<sub>2</sub>
O
<sub>2</sub>
, also sensed sulfane sulfur, as revealed via mutational analysis, constructed gene circuits, and in vitro gene expression. Hydrogen polysulfide modified OxyR at Cys199 to form a persulfide OxyR C199-SSH, and the modified OxyR activated the expression of thioredoxin 2 and glutaredoxin 1. The two enzymes are known to reduce sulfane sulfur to hydrogen sulfide. Bioinformatics analysis indicated that OxyR homologs are widely present in bacteria, including obligate anaerobic bacteria. Thus, the OxyR sensing of sulfane sulfur may represent a preserved mechanism for bacteria to deal with sulfane sulfur stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31421411</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>02</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2213-2317</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>26</Volume>
<PubDate>
<Year>2019</Year>
<Month>09</Month>
</PubDate>
</JournalIssue>
<Title>Redox biology</Title>
<ISOAbbreviation>Redox Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>OxyR senses sulfane sulfur and activates the genes for its removal in Escherichia coli.</ArticleTitle>
<Pagination>
<MedlinePgn>101293</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S2213-2317(19)30557-9</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.redox.2019.101293</ELocationID>
<Abstract>
<AbstractText>Sulfane sulfur species including hydrogen polysulfide and organic persulfide are newly recognized normal cellular components, and they participate in signaling and protect cells from oxidative stress. Their production has been extensively studied, but their removal is less characterized. Herein, we showed that sulfane sulfur at high levels was toxic to Escherichia coli under both anaerobic and aerobic conditions. OxyR, a well-known regulator against H
<sub>2</sub>
O
<sub>2</sub>
, also sensed sulfane sulfur, as revealed via mutational analysis, constructed gene circuits, and in vitro gene expression. Hydrogen polysulfide modified OxyR at Cys199 to form a persulfide OxyR C199-SSH, and the modified OxyR activated the expression of thioredoxin 2 and glutaredoxin 1. The two enzymes are known to reduce sulfane sulfur to hydrogen sulfide. Bioinformatics analysis indicated that OxyR homologs are widely present in bacteria, including obligate anaerobic bacteria. Thus, the OxyR sensing of sulfane sulfur may represent a preserved mechanism for bacteria to deal with sulfane sulfur stress.</AbstractText>
<CopyrightInformation>Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hou</LastName>
<ForeName>Ningke</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yan</LastName>
<ForeName>Zhenzhen</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fan</LastName>
<ForeName>Kaili</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Huanjie</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Rui</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xia</LastName>
<ForeName>Yongzhen</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xun</LastName>
<ForeName>Luying</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China; School of Molecular Biosciences, Washington State University, Pullman, WA, 99164-7520, USA. Electronic address: luying_xun@vetmed.edu.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Huaiwei</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China. Electronic address: liuhuaiwei@sdu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>08</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Redox Biol</MedlineTA>
<NlmUniqueID>101605639</NlmUniqueID>
<ISSNLinking>2213-2317</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029968">Escherichia coli Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012097">Repressor Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C499299">oxyR protein, E coli</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>70FD1KFU70</RegistryNumber>
<NameOfSubstance UI="D013455">Sulfur</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>YY9FVM7NSN</RegistryNumber>
<NameOfSubstance UI="D006862">Hydrogen Sulfide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002853" MajorTopicYN="N">Chromatography, Liquid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029968" MajorTopicYN="N">Escherichia coli Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015964" MajorTopicYN="N">Gene Expression Regulation, Bacterial</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006862" MajorTopicYN="N">Hydrogen Sulfide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012097" MajorTopicYN="N">Repressor Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013455" MajorTopicYN="N">Sulfur</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053719" MajorTopicYN="N">Tandem Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015533" MajorTopicYN="N">Transcriptional Activation</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Escherichia coli</Keyword>
<Keyword MajorTopicYN="Y">Glutaredoxin</Keyword>
<Keyword MajorTopicYN="Y">OxyR</Keyword>
<Keyword MajorTopicYN="Y">Sulfane sulfur</Keyword>
<Keyword MajorTopicYN="Y">Thioredoxin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>05</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>07</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>08</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31421411</ArticleId>
<ArticleId IdType="pii">S2213-2317(19)30557-9</ArticleId>
<ArticleId IdType="doi">10.1016/j.redox.2019.101293</ArticleId>
<ArticleId IdType="pmc">PMC6831875</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2016 Jan 13;138(1):289-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26667407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2016 Dec;18(12):5123-5136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27573649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 Feb 22;8(1):3508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29472641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2019 Jun;24:101179</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30939430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Microb Physiol. 2018;72:1-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29778212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 May 3;109(3):383-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12015987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Oct 06;5:14774</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26437775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2001 Apr 6;105(1):103-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11301006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chim Acta. 2017 May 29;969:18-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28411626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 May 19;112(20):6443-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25931525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1990 Apr 13;248(4952):189-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2183352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Sep 13;9(1):3713</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30213949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2009 Nov 10;2(96):ra72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19903941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 1996 Feb 1;16(3):1066-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8558235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2007 May;64(3):822-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17462026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Oct 27;8(1):1177</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29079736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jan;43(2):e12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25399421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1985 Jul;41(3):753-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2988786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Poult Sci. 2019 Sep 1;98(9):4094-4103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31002106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Regul Integr Comp Physiol. 2016 Apr 1;310(7):R549-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26764057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2004 Feb;6(1):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14713336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2011 Jun 1;413(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21303647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 1;280(26):24544-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15833738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2010 Dec;48(12):931-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20970349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10088-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16030151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2007 Jun 08;7:53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17559662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2018 Feb 5;496(2):648-653</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29331374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2018 Jun;592(12):2140-2152</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29754415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2013 Jul;97(13):5965-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23546420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jan 28;275(4):2505-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10644706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Biol Int. 2010 Apr 14;34(6):565-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20184555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2017 Aug;12:325-339</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28285261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10829079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Infect Dis. 2017 Oct 13;3(10):744-755</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28850209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2007 Oct;71(10):2402-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17928705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 May 27;111(21):7606-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24733942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2011 Nov 1;439(3):479-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21732914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9317-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15967999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Mar 13;279(5357):1718-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9497290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2017 Dec;11(12):2754-2766</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28777380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2019 Feb 20;10:298</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30873134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jul 5;288(27):20002-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23698001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2014 Dec;94(6):1343-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25318663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 Apr 25;1491(1-3):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10760563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Adv. 2016 Jan 22;2(1):e1500968</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26844296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2008 Apr;11(2):100-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18359660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2019 Mar 19;91(6):3893-3901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30793598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 2019 Feb;176(4):607-615</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29748969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2017 Feb 21;8(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28223460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2013 Nov 1;587(21):3548-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24055470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2012 Nov 28;3:448</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23226130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 Jan 15;160(1-2):132-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25542313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2015 Jul;11(7):457-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26083070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Anti Infect Ther. 2016 Oct;14(10):969-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27494175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Aug;1797(8):1500-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Apr 27;336(6080):470-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22539721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biosyst. 2015 Jul;11(7):1775-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25969163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jun 10;286(23):20283-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21474441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2018 May;15:74-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29220697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Apr 25;304(1):41-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12705881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2017 Aug;105(3):373-384</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28612361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2013 Jun;27(6):2451-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23413359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2014 Dec;77:82-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25229186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Nov 23;4:e10067</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26595448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Sci. 2016 May 25;7(5):3414-3426</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27170841</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Hou, Ningke" sort="Hou, Ningke" uniqKey="Hou N" first="Ningke" last="Hou">Ningke Hou</name>
</noRegion>
<name sortKey="Fan, Kaili" sort="Fan, Kaili" uniqKey="Fan K" first="Kaili" last="Fan">Kaili Fan</name>
<name sortKey="Li, Huanjie" sort="Li, Huanjie" uniqKey="Li H" first="Huanjie" last="Li">Huanjie Li</name>
<name sortKey="Liu, Huaiwei" sort="Liu, Huaiwei" uniqKey="Liu H" first="Huaiwei" last="Liu">Huaiwei Liu</name>
<name sortKey="Xia, Yongzhen" sort="Xia, Yongzhen" uniqKey="Xia Y" first="Yongzhen" last="Xia">Yongzhen Xia</name>
<name sortKey="Yan, Zhenzhen" sort="Yan, Zhenzhen" uniqKey="Yan Z" first="Zhenzhen" last="Yan">Zhenzhen Yan</name>
<name sortKey="Zhao, Rui" sort="Zhao, Rui" uniqKey="Zhao R" first="Rui" last="Zhao">Rui Zhao</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Xun, Luying" sort="Xun, Luying" uniqKey="Xun L" first="Luying" last="Xun">Luying Xun</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000141 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000141 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31421411
   |texte=   OxyR senses sulfane sulfur and activates the genes for its removal in Escherichia coli.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31421411" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020